Problem 6.16

The force on a 2 kg mass is shown in the sketch.

a.) What's the impulse on the mass?

b.) If initially at rest, what's its final velocity?

c.) If initially moving at -2 m/s, what its final velocity?

The force on a 2 kg mass is shown in the sketch.

a.) What's the impulse on the mass?

This is either the change of momentum or the area under the *force versus time* graph. From the graph, the impulse is:

$$J = \frac{1}{2} (4 \text{ nt})(2 \text{ sec}) + (4 \text{ nt})(1 \text{ sec}) + \frac{1}{2} (4 \text{ nt})(2 \text{ sec})$$

= 12 nt • sec

b.) If initially at rest, what's its final velocity?

Knowing the impulse, we can write:

$$J = \Delta p$$

=(mv_f)-(mv_o)
=(2 kg)v_f
= 12 nt • sec
 \Rightarrow v_f = 6 m/s

c.) If initially moving at -2 m/s, what its final velocity?

Again, knowing the net impulse yields:

$$J = \Delta p$$

= (mv_f) - (mv_o)
=(2 kg)v_f - (2 kg)(-2 m/s)
= 12 nt • sec
 \Rightarrow v_f = 4 m/s

